Journal of Organometallic Chemistry, 334 (1987) 347-358 Elsevier Sequoia S.A., Lausanne – Printed in The Netherlands

Synthese und Reaktivität von Ferrocenyl-Pentacarbonylmangan, Mn(CO)₅Fc

Max Herberhold* und Heidemarie Kniesel

Laboratorium für Anorganische Chemie der Universität Bayreuth, Universitätsstrasse 30, D-8580 Bayreuth (Bundesrepublik Deutschland)

(Eingegangen den 9. April 1987)

Abstract

The compound $Mn(CO)_5Fc$ can be prepared by the reaction of $Mn(CO)_5Br$ with ferrocenyllithium, FcLi. The mangana- β -diketone $[Mn(CO)_4(FcCO)_2]H$, obtained as a side-product, is converted into $Mn(CO)_5Fc$ with concomitant formation of diferrocenoyl, $(FcCO)_2$. In proton-containing solvents the ferrocenyl group of $Mn(CO)_5Fc$ is slowly split off in the form of ferrocenylcarbonyl compounds: the aldehyde Fc-CHO is formed in acetonitrile, and the ester Fc-COOCH₃ in methanol. The ferrocenyl-manganese complex, $Mn(CO)_5Fc$, reacts with triphenylphosphane to give *cis*-Mn(CO)₄(PPh₃)Fc, with t-butylisocyanide to give *fac*-Mn(CO)₃(CN¹Bu)₂-COFc, and with oxidants such as NOBF₄ or iodine to give the ferricenium cation [Mn(CO)₅Fc]⁺.

Zusammenfassung

Die Verbindung $Mn(CO)_5Fc$ kann durch Umsetzung von $Mn(CO)_5Br$ mit Ferrocenyl-lithium, Fc-Li, dargestellt werden. Das als Nebenprodukt erhältliche Mangana- β -diketon $[Mn(CO)_4(FcCO)_2]H$ wird unter gleichzeitiger Bildung von Diferrocenoyl, $(FcCO)_2$, in $Mn(CO)_5Fc$ umgewandelt. In protonhaltigen Solvenzien wird der Ferrocenylrest aus $Mn(CO)_5Fc$ langsam in Form von Ferrocencarbonyl-Verbindungen abgespalten: in Acetonitril entsteht der Aldehyd Fc-CHO, in Methanol der Ester Fc-COOCH₃. Der Ferrocenylmangan-Komplex, $Mn(CO)_5Fc$, reagiert mit Triphenylphosphan zu *cis*- $Mn(CO)_4(PPh_3)Fc$, mit t-Butylisonitril zu *fac*- $Mn(CO)_3(CN^{\dagger}Bu)_2COFc$ und mit Oxidationsmitteln wie NOBF₄ oder Iod zum Ferroceniumkation $[Mn(CO)_5Fc]^+$.

Einleitung

Carbonylmetall-Komplexe mit unsubstituierten η^1 -Ferrocenyl-Liganden sind selten, und alle bisher beschriebenen Beispiele enthalten einen zusätzlichen η^5 -

0022-328X/87/\$03.50 © 1987 Elsevier Sequoia S.A.

Cyclopentadienyl-Ringliganden am Zentralmetall. Die Untersuchungen beschränkten sich jedoch auf CpFe(CO)₂Fc (1) [1–3], CpMo(CO)₃Fc [3] und CpW(CO)₃Fc (2)* [2,3]; für den mit 2 isoelektronischen Nitrosylkomplex CpW(NO)₂Fc wurde eine Röntgenstrukturanalyse durchgeführt [4]. Auch Carbonylmetall-Komplexe mit

substituierten η^1 -Ferrocenyl-Liganden sind bekannt: als Beispiele können die 2.1'-Dichlorferrocenyl-Verbindungen des Typs **3** [5] und die Zwitterionen **4** gelten, die Phosphonium-Substituenten am σ -gebundenen Ferrocenylring tragen [6]:

In der Reihe der Pentacarbonylmangan-Komplexe liegen Verbindungen mit 2-Acetylferrocenyl- und 2,1'-Dichlorferrocenyl-Liganden. 5 [7] bzw. 6 [5], vor. Die Darstellung des unsubstituierten Ferrocenyl-pentacarbonylmangans, $Mn(CO)_5Fc$ (7), und einiger Derivate ist Thema der vorliegenden Arbeit.

Experimenteller Teil

Alle Umsetzungen wurden unter N₂-Atmosphäre durchgeführt. Die Lösungsmittel Pentan, Toluol, Diethylether und Tetrahydrofuran (THF) wurden zunächst über Na/K-Legierung, Methylenchlorid über P₄O₁₀, Methanol über Magnesiumspänen, am Rückfluss erhitzt und dann im N₂-Strom abdestilliert. Acetonitril und Dimethylformamid wurden über Molekularsieb getrocknet.

^{*} Abkürzungen: Fc = Ferrocenyl, $C_5H_5FeC_5H_4$; Cp = Cyclopentadienyl, η^5 -C₈H₅; Ph = Phenyl, C_6H_5 ; ¹Bu = t-Butyl, C(CH₃)₃.

Synthese von Ferrocenyl-pentacarbonylmangan, $Mn(CO)_5Fc$ (7)

Zur Darstellung von Ferrocenyl-lithium, FcLi, (vgl. Ref. [8]) wurde eine Lösung von 1.59 g (6 mmol) Ferrocenylbromid, FcBr, in 40 ml Diethylether bei -78° C mit der equivalenten Menge einer ⁿBuLi-Lösung (Merck, 3.75 ml einer 1.6 molaren Hexanlösung) umgesetzt. Beim Auftauen auf Raumtemperatur fiel FcLi als oranger Feststoff aus. Die überstehende Lösung wurde vorsichtig abgetrennt und das Produkt FcLi im Hochvakuum getrocknet. Ausbeute 0.98–1.04 g (ca. 85–90%).

Eine Lösung von ca. 1 g (5.2 mmol) des so frisch hergestellten Ferrocenyl-lithiums, FcLi, in 60 ml THF wurde bei -78 °C zu einer Lösung von 1.10 g (4 mmol) Mn(CO)₅Br in 30 ml THF gegeben. Nach dem Auftauen auf Raumtemperatur wurde noch 1.5 h gerührt, bevor das Solvens im Vakuum abgezogen wurde. Der Rückstand wurde mehrmals mit Toluol extrahiert, die Toluol-Lösung wurde zur Trockne gebracht und das Rohprodukt an einer mit Kieselgel (Matrex TM 60, 70–200 μ) gefüllten Chromatographiersäule (20 × 2 cm) aufgetrennt. Bei der Elution mit Pentan wurde zuerst das Hauptprodukt Mn(CO)₅Fc (7) als orange Zone ausgewaschen; mit CH₂Cl₂ folgte anschliessend das β -Diketon 3-Tetracarbonylmangana-diferrocenyl-2,4-diketon, *cis*-[(CO₄Mn(FcCO)₂]H (8), als rote Zone und schliesslich mit CH₂Cl₂/Et₂O-Gemischen (1/1) Diferrocenoyl, (FcCO)₂ (9) als violette Zone. Komplex 7 wurde bei -78 °C aus Pentan kristallisiert. Orange Kristalle, Schmp. 81–82 °C, Ausbeute 1.14 g (3 mmol, 75%). (Gef.: C, 47.68; H, 2.60; Mn, 14.4%; Molmasse 380, massenspektroskopisch. C₁₅H₉FeMnO₅ (380.02) ber.: C, 47.41; H, 2.39; Mn, 14.46%).

Die Nebenprodukte cis-[(CO)₄Mn(FcCO)₂]H (8) und (FcCO)₂ (9) konnten aus Methylenchlorid/Pentan bei -78°C kristallisiert und anhand ihrer Spektren charakterisiert werden (Tabellen 1 und 2a). Komplex 8 bildet rote Kristalle, die beim Erwärmen in Lösung in ein Gemisch von 7 und 9 übergehen. Auch im Massenspektrum liessen sich nur die Sekundärprodukte Mn(CO)₅Fc (7, 14%) und (FcCO)₂ (9, 3%) sowie deren Fragmente beobachten (Basispeak: FcH (100%)).

Das violette Diferrocenyl- α -diketon 9 zeigt im Massenspektrum neben dem Molekülpeak (m/e 426, I_{rel} 80%) das durch homolytische Spaltung entstehende Fragment Ferrocenoyl, FcCO⁺ (m/e 213, I_{rel} 100%) als besonders intensives Bruchstück (Tabelle 1).

Die Ausbeute an den Nebenprodukten 7 und 9 hängt von den Reaktionsbedingungen ab; bei Tieftemperatur-Umsetzungen $(-78^{\circ}C)$ entsteht primär *cis*-[(CO)₄Mn(FcCO)₂]Li als einziges Produkt; erst beim Aufwärmen bildet sich Mn(CO)₅Fc (7). Diferrocenoyl (9) konnte in Mengen bis zu 0.12 g (10.8%, bez. auf FcLi) isoliert werden.

Abspaltung des Ferrocenyl-Liganden aus $Mn(CO)_5Fc$ (7)

(a) In Acetonitril. Eine Lösung von 114 mg (0.3 mmol) $Mn(CO)_5Fc$ (7) in 30 ml Acetonitril wurde 63 h bei Raumtemperatur gerührt. Die Lösung wurde dann über Na₂SO₄ filtriert und zur Trockne gebracht. Der Rückstand wurde mehrmals mit Pentan extrahiert und der konzentrierte Pentan-Extrakt an Kieselgel chromatographiert. Mit Pentan wurde sehr wenig Ferrocen (FcH), mit CH₂Cl₂ das Ausgangsmaterial Mn(CO)₅Fc (7) (51 mg, 45%) und mit Diethylether schliesslich Ferrocenaldehyd, Fc-CHO (24 mg, 37%; Schmp. 129–131°C) eluiert.

(b) In Methanol. Eine Lösung von 95 mg (0.25 mmol) $Mn(CO)_5Fc$ (7) in 30 ml Methanol wurde 67 h bei Raumtemperatur gerührt und dann zur Trockne gebracht.

Der Rückstand wurde wiederholt mit Pentan extrahiert. der Pentanauszug zur Trockne gebracht, das Produktgemisch in wenig CH_2Cl_2 aufgenommen und über eine mit Kieselgel gefüllte Säule getrennt. Mit CH_2Cl_2 entwickelten sich drei Zonen: die erste (orange) enthielt den unveränderten Ferrocenzylkomplex 7 (12 mg, 13%). die zweite (gelbe) den Methylester der Ferrocencarbonsäure, Fc-COOMe (42 mg, 69%, gelbe Nadeln aus Hexan, Schmp. 68–69°C) und die dritte (rote) Spuren des Aldehyds Fc-CHO.

(c) Unter Hydroformylierungs-Bedingungen in Dimethylformamid (DMF). In einem 100 ml-Laborautoklaven wurden auf eine orange Lösung von 114 mg (0.3 mmol) Mn(CO)₅Fc (7) in 25 ml DMF nacheinander 8 bar Propen. 15 bar CO und 15 bar H₂ aufgepresst. Die Reaktionslösung wurde 20 h bei 100°C gerührt. Die dunkelrote Lösung wurde im Vakuum zur Trockne gebracht und der Rückstand mit CH₂Cl₂ extrahiert. Bei der Trennung des Produktgemisches durch präparative Dünnschicht-Chromatographie entwickelten sich mit CH₂Cl₂ mehrere Zonen, die wenig Ferrocen, dann Ferrocenaldehyd. Fc-CHO (11 mg, 17%), und schliesslich Ferrocenyl-methylalkohol, Fc-CH₂OH (30 mg, 47%, gelbe Nadeln aus Pentan bei -20°C, Schmp. 78–80°C) enthielten.

Tabelle 1

Charakterisierung der Ferrocen-Verbindungen

	FcH	Fc-CH ₂ OH (vgl. [9a]) "	Fc-CHO (vgl. [9b]) ^d	Fc-COOMe (vgl. [9c]) "	(Fe-CO) ₇ (9) (vgl. [9d]) ^a	
Farbe	gelb-orange	ange gelb orange		gelb	violett	
Schmp. (°C)	173	7880	129-131	68-69	194-195	
IR: ν(CO)						
(cm ⁻¹) KBr			1664	1710	1641	
¹ H-NMR (Raumtemp.) ^b						
$\delta(C_5H_5)$	4.15s	4.21	4.26s	4.158	4.21s	
$\delta(H^2 - H^5)$		4.29vt; 4.39vt	4.57vt: 4.77vt ^c	4.37vt; 4.79vt 1	4.61vt: 4.91vt '	
Sonstige		1.60(OH) d	9.94s(CHO)	3.778(OCH ₃)		
¹³ C-NMR						
(Messtemp, $(^{\circ}C))^{h}$		(-40)	(-20)	(-40)	(-20)	
$\delta(C_5H_5)$	67.9	68.16	69.64	69.64	70,44	
$\delta(C^2 - C^5)$		67.88; 68.33	(69.6); 73.3 ^c	69.91: 71.4	70.55; 73.6	
$\delta(C^1)$		87.9	79.0	70.5	74.3	
δ(C=O)			193.9	172.5	197.8	
Sonstige		60.6 (CH ₂)		51.9 (OCH ₃)		
MS $[m/e], (I_{rel} (\%))$						
M *	186 (100%)	216 (90%)	214 (100%)	244 (100%)	426 (80%)	
		138 (100%)	(186 (74%))		213 (100%)	
		(CpFeOH*)	(FcH *)		(FeCO ⁺)	

^{*a*} Literaturangaben zu den hier charakterisierten Ferrocen-Verbindungen finden sich in Gmelin's Handbuch [9a–d]. ^{*b*} Alle Messungen in CDCl₂. ^{*c*} Das virtuelle Triplett (vt) bei tieferem Feld entspricht den α -Protonen H²/H⁵, vgl. [9a–d]. ^{*d*} Das Signal der Methylenprotonen CH₂ liegt unter dem der Ferrocenylprotonen bei ca. δ 4.3. ^{*c*} Das beobachtete Signal bei δ 73.3 entspricht den β -Kohlenstoffatomen C³/C⁴, vgl. [9b]. Die Ferrocen-Derivate Fc-CH₂OH, Fc-CHO und Fc-COOMe wurden anhand ihrer IR-, NMR- und Massenspektren charakterisiert (Tabelle 1). Die spektroskopischen Daten stimmen im erwarteten Rahmen mit den in der Literatur [9] dokumentierten Angaben überein.

Carbonylierung von Ferrocenyl-pentacarbonylmangan, Mn(CO), Fc (7)

Auf eine Lösung von 114 mg (0.3 mmol) $Mn(CO)_5Fc$ (7) in 30 ml Pentan wurden 35 bar Kohlenmonoxid aufgepresst, dann wurde das Reaktionsgemisch 40 h bei 100 °C gehalten. Nach dem Abkühlen und Entspannen des Autoklaven enthielt die orange Pentanlösung einen hell-orangen Niederschlag. Die gesamte Suspension wurde zur Trockne gebracht, der Rückstand in wenig CH_2Cl_2 gelöst und das Rohprodukt durch Säulenchromatographie an Kieselgel getrennt. Bei der Elution mit CH_2Cl_2 konnte eine orange Zone, mit CH_2Cl_2/Et_2O eine rote Zone eluiert werden. Die erstere enthielt den Ausgangs-Ferrocenylkomplex $Mn(CO)_5Fc$ (7) (49 mg, 43%), die zweite den Ferrocenoylkomplex $Mn(CO)_5COFc$ (10; hell-orange Kristalle, 70 mg, 57%).

Umsetzungen von Mn(CO)₅Fc (7) unter Substitution von CO-Liganden

(a) Mit Triphenylphosphan. 107 mg (0.28 mmol) 7 und 75 mg (0.28 mmol) PPh₃ wurden in 30 ml Toluol gelöst. Die Lösung wurde so lange (4 h) bei 100°C gehalten, bis die ν (CO)-Absorptionen von 7 im IR-Lösungsspektrum verschwunden waren. Das Solvens wurde abgezogen, der Rückstand mehrmals mit Pentan extrahiert und die konzentrierte Pentanlösung auf eine mit Kieselgel in Pentan gefüllte Chromatographiersäule gegeben. Ein schwach gelber Vorlauf in Pentan enthielt u.a. wenig Ferrocen, FcH, und Triphenylphosphan, PPh₃. Das Produkt *cis*-[Mn(CO)₄(PPh₃)Fc] (11) wurde mit CH₂Cl₂ eluiert und bei -78° C aus Pentanlösung in Form oranger Kristalle vom Schmp. 156–159°C erhalten. Ausbeute 125 mg (73%).

(b) Mit t-Butylisonitril. Zu einer Lösung von 122 mg $(0.32 \text{ mmol}) \text{ Mn}(\text{CO})_5 \text{Fc}$ (7) in 30 ml THF wurden 0.25 ml (184 mg, 2.22 mmol) t-Butylisonitril gegeben. Die Reaktionslösung wurde 1.5 h auf 60 °C erhitzt und dann zur Trockne gebracht. Der Rückstand wurde in Pentan gelöst und die konzentrierte Pentanlösung auf eine mit Kieselgel in Pentan gefüllte Säule gegeben. Mit Methylenchlorid wurde eine schwach gelbe Zone ausgewaschen, die Spuren von Ferrocen enthielt; der Komplex *fac*-[Mn(CO)₃(CN¹Bu)₂COFc] (13) wurde mit CH₂Cl₂/Et₂O als rote Zone eluiert und aus Pentanlösung bei - 78 °C kristallisiert. Oranges Produkt, Ausbeute über 150 mg (> 90%).

Wenn die THF-Lösung von 7 und t-Butylisonitril nicht erhitzt, sondern über Nacht (17 h) bei Raumtemperatur gerührt wurde, liess sich bei der Chromatographie über Silicagel nach viel unverändertem $Mn(CO)_5Fc$ (7, Elution mit CH_2Cl_2) eine orange Zone mit Et_2O/CH_2Cl_2 (1/1) eluieren, die neben fac-[Mn(CO)₃-(CN^tBu)₂COFc] (13) auch etwas *cis*-[Mn(CO)₄(CN^tBu)COFc] (12) enthielt. Die orangen Komplexe 12 und 13 wurden durch Dünnschicht-Chromatographie an Silicagel getrennt; dabei wurden 18 mg 12 erhalten (Ausbeute: 1.2%).

Oxidation von Ferrocenyl-pentacarbonylmangan, $Mn(CO)_5Fc$ (7)

(a) Mit Nitrosyl-tetrafluoroborat. Eine orange Lösung von 148 mg (0.39 mmol) 7 in 30 ml CH_2Cl_2 wurde mit 124 mg (1.06 mmol) festem $NO^+BF_4^-$ versetzt. Dabei

schlug die Farbe sofort nach braun-grün um; das IR-Lösungsspektrum bestätigte, dass sich 7 vollständig umgesetzt hatte. Die Reaktionslösung wurde über Na₂SO₄ filtriert und das Filtrat mit Pentan überschichtet. Das entstehende braune Pulver [Mn(CO)₅Fc]BF₄ (14) wurde abgetrennt, zweimal mit Pentan gewaschen und im Hochvakuum getrocknet. Ausbeute 135 mg (74%), Schmp. 142–145°C (Zers.). (Gef.: C, 38.35; H, 2.00; B, 2.25; F, 15.5; Mn, 11.4. $C_{15}H_{9}BF_{4}FeMnO_{5}$ (466.83) ber.: C, 38.59; H, 1.94; B, 2.32; F, 16.28; Mn, 11.77%).

(b) Mit Iod. Eine Lösung von 122 mg (0.32 mmol) Mn(CO)₅Fc (7) in 40 ml Pentan wurde mit 165 mg (0.65 mmol) festem I₂ versetzt. Die Reaktionsmischung wurde 40 min bei Raumtemperatur gerührt und dann über Na₂SO₄ filtriert; das Filtrat war schwach violett gefärbt. Der Rückstand wurde mit CH₂Cl₂ von Na₂SO₄ abgelöst und das Filtrat mit Pentan überschichtet. Aus diesem Lösungsmittelgemisch schieden sich bei -20 °C schwarze Nadeln der Zusammensetzung [Mn(CO)₅Fc]I₄ (15) aus. Ausbeute 227 mg (80%). Schmp. 94 °C (Zers.). (Gef.: C, 20.13; H, 1.13; I, 57.3; Mn, 6.08. C₁₅H₉FeI₄MnO₅ (887.64) ber.: C. 20.30; H, 1.02: I, 57.18; Mn, 6.19%).

Spektren

Folgende Spektrometer standen zur Verfügung: IR-Spektren: Perkin-Elmer 983 G. ¹H-NMR-Spektren: JEOL JNM PMX 60, Bruker AC 300. ¹³C-NMR-Spektren: JEOL FX 90Q, Bruker AC 200. Bruker AC 300. ³¹P-NMR-Spektren: JEOL FX 90Q, Massenspektren: Varian MAT CH7, Finnigan MAT 8500.

Ergebnisse und Diskussion

Darstellung und Charakterisierung von $Mn(CO)_5Fc$ (7)

Durch Umsetzung von $Mn(CO)_5Br$ mit Ferrocenyl-lithium. FcLi, wurde der orange Komplex $Mn(CO)_5Fc$ (7) in 75% Ausbeute erhalten. Bei der Säulenehromatographie des Rohprodukts an Silicagel wurden ausserdem Tetracarbonylmangana-diferrocenyl-diketon, *cis*-[(CO)₄Mn(FcCO)₂]H (8) und Diferrocenoyl (9) als Nebenprodukte isoliert. Ferrocen entstand nur in Spuren.

Der rote Tetracarbonyl-Komplex 8, der den von Lukehart und Mitarbeitern untersuchten Metalla- β -diketonen [10] entspricht, wurde röntgenstrukturanalytisch aufgeklärt [11]. Er zersetzt sich langsam in Lösung unter Bildung von 7 und 9.

Die Zusammensetzung von $Mn(CO)_5Fc$ (7) ergibt sich aus Elementaranalyse und Massenspektrum (Tabelle 2a). Die ¹H- und ¹³C-NMR-Spektren zeigen – ebenso wie bei **8** und **9** – das typische Muster des unsubstituierten Ferrocenylrests (Tabellen 1 und 2a). Für das Metalla- β -diketon **8** ist im ¹H-NMR-Spektrum ein bei sehr

niedrigem Feld (δ 20.75 in Toluol- d_8) auftretendes Singulett charakteristisch, das dem in einer Wasserstoffbrücke gebundenen, enolischen Proton entspricht. Auch bei vergleichbaren Rhena- und Ferra- β -diketonen wird das enolische Proton im Bereich von δ 19–21 ppm beobachtet (vgl. [10]), entsprechende Mangana- β -diketone sind offenbar bisher nicht beschrieben worden. (Das "organische" Analogon 1,3-Diferrocenyl- β -diketon (= Diferrocenoylmethan) ist bekannt [12,13]; es liegt in Lösung in der Enolform CH(FcCO)₂H vor. Das enolische Proton wurde jedoch im ¹H-NMR-Spektrum [13] nicht beobachtet, – vermutlich weil im Solvens CDCl₃ rasch H/D-Austausch eintritt.)

Reaktivität von Mn(CO)₅Fc (7)

Der Komplex $Mn(CO)_5Fc$ (7) ist in allen gängigen organischen Lösungsmitteln löslich, er reagiert jedoch mit protonenhaltigen Solvenzien. In Acetonitril bildet sich bei Raumtemperatur langsam Ferrocenaldehyd, Fc-CHO; bei höherer Temperatur (60°C) wurde nur Ferrocen, FcH, erhalten. In Methanol entsteht der Ester Fc-COOMe neben sehr wenig Aldehyd Fc-CHO. Bei einem Versuch, $Mn(CO)_5Fc$ (7) als Katalysator für die Hydroformylierung von Propen zu verwenden, entstand unter 15 bar CO und 15 bar H₂ wieder Ferrocenaldehyd, Fc-CHO, neben dem (daraus) durch Hydrierung gebildeten Alkohol Fc-CH₂OH.

Die Bildung von Ferrocenyl-carbonyl-Verbindungen (Fc-CHO, Fc-COOMe) aus 7 liess vermuten, dass sich der Ferrocenylrest unter Wanderung an einen benachbarten terminalen CO-Liganden ("CO-Insertion") in eine Ferrocenoylgruppe umwandeln kann. Obwohl eine Pentanlösung von 7 bei Raumtemperatur nicht mit CO reagierte, konnte bei 100°C unter 35 bar CO eine partielle Carbonylierung zu Ferrocenoyl-pentacarbonylmangan, $Mn(CO)_5$ -COFc (10), erreicht werden; der hell-orange gefärbte Komplex 10 ist in Pentan unlöslich. (Bei 120°C trat bereits starke Zersetzung von 7 ein, wobei $Mn_2(CO)_{10}$ und Fc-CHO neben wenig $Mn(CO)_5$ -COFc (10) isoliert wurden.)

In chlorierten Methanen (CH₂Cl₂, CHCl₃) und Ethern (Et₂O, THF) ist **10** löslich. In Lösung wird jedoch langsame CO-Abspaltung beobachtet; die Decarbonylierung zu $Mn(CO)_5Fc$ (7) lässt sich ¹H-NMR-spektroskopisch schon oberhalb 0°C gut verfolgen:

Zur Überprüfung der Substitution von CO-Liganden in $Mn(CO)_5Fc$ (7) wurden Umsetzungen mit Triphenylphosphan und t-Butylisonitril, PPh₃ bzw. C=N-¹Bu, durchgeführt. Bei der Reaktion von 7 mit PPh₃ entstand – auch bei fünffachem Überschuss von PPh₃ – nur das monosubstituierte Derivat *cis*-[Mn(CO)₄(PPh₃)Fc] (11). Das ³¹P-NMR-Spektrum von 11 zeigt nur ein einziges Signal (48.0 ppm, rel. H₃PO₄, in CDCl₃, 0°C); es ist demnach sicher, dass ausschliesslich das *cis*-Isomere gebildet wurde. Es wurden keine Hinweise auf die Bildung eines Ferrocenoyl-Komplexes gefunden, der in Analogie zu der bei der Reaktion von Mn(CO)₅Me mit

PPh₃ [14] entstehenden Acylverbindung $Mn(CO)_4(PPh_3)COCH_3$ zumindest intermediär auftreten könnte. In ähnlicher Weise wurde auch bei der Umsetzung von $Mn(CO)_5Ph$ mit PPh₃ nicht die Benzoylverbindung $Mn(CO)_4(PPh_3)COPh$, sondern nur der Phenylkomplex $Mn(CO)_4(PPh_3)Ph$ isoliert [15].

Bei der analogen Reaktion von Mn(CO)₅Fe (7) mit 1,2-Bis(diphenylphosphino)ethan wurde jedoch der Ferrocenoyl-Komplex Mn(CO)₃(Ph₂PCH₂CH₂PPh₂)COFc erhalten, der eine faciale Anordnung der drei CO-Liganden enthält (δ (³¹P) 78.4 ppm) [16].

Im Gegensatz zu Triphenylphosphan reagiert auch überschüssiges t-Butylisonitril mit 7 unter Bildung von Ferrocenoyl-Komplexen. Bei Raumtemperatur verläuft die Umsetzung in THF-Lösung schleppend, und es entstehen nebeneinander *cis*-[Mn(CO)₄(CN⁺Bu)COFc] (12) und *fac*-[Mn(CO)₃(CN⁺Bu)₂COFc] (13). In siedendem THF wird die Bildung von 13 vollständig. Die faciale Konfiguration ergibt sich aus dem IR-Spektrum, das mit zwei $\nu(C \equiv N)$ -Absorptionen (2186 und 2166 cm⁻¹ in KBr) zwei zueinander *cis*-ständige Isonitril-Liganden anzeigt und im $\nu(CO)$ -Bereich das einfache Muster der facialen Tricarbonylmetall-Gruppierung (2006vs und 1949vs cm⁻¹ in KBr) erkennen lässt. Auch bei früher beschriebenen Umsetzungen von Alkyl-pentacarbonylmangan-Komplexen Mn(CO)₅R (R = Methyl, Benzyl und *p*-Chlorbenzyl) mit Isonitrilen R'-N \equiv C (R' = n-Butyl, t-Butyl, Cyclohexyl) wurden stets CO-Insertionsprodukte gebildet [17]; dabei wurde die Isonitril-Komponente im Unterschuss eingesetzt, und als Produkte wurden Tetracarbonyle Mn(CO)₄-(CNR')COR (in Form von *cis-trans*-Gemischen) erhalten.

Mit Stickstoffmonoxid, NO, reagiert $Mn(CO)_5Fc$ (7) bei Raumtemperatur nicht. Dagegen lässt es sich (wie Ferrocen selbst [18]) durch Nitrosyhetrafluoroborat. NO⁺ BF₄⁻⁻, zum paramagnetischen Kation oxidieren:

$$\frac{\text{Mn}(\text{CO})_5\text{Fc} + \text{NOBF}_4 \xrightarrow{(\text{CH}_2\text{CI}_2)} [\text{Mn}(\text{CO})_5\text{Fc}]\text{BF}_4 + \text{NO}}{(7)}$$
(14)

Die entsprechende Oxidation mit elementarem Iod ergibt ein Produkt, das nach der Elementaranalyse die Zusammensetzung $[Mn(CO)_5Fc]I_4$ (15) hat. Die IR-Spektren im $\nu(CO)$ -Bereich (Tabelle 2b) lassen keinen Zweifel, dass 14 und 15 dieselbe kationische Spezies enthalten. Das Produkt 15 entsteht offenbar auch, wenn Iod im leichten Unterschuss oder Überschuss ($7/I_2 = 1/1-3$) eingesetzt wird; dabei bleiben dann entweder unverändertes 7 oder I_2 übrig. Mit wässriger Thiosulfatlösung, Na₂S₂O₃, wird 15 wieder zu Mn(CO)₅Fc (7) reduziert. – Bei der seit langem bekannten Oxidation von Ferrocen mit elementarem Iod [19] wurde neben der Bildung des Ferroceniumtriiodids, $FcH^+ I_3^-$, dessen Struktur röntgenographisch gesichert ist [20], auch die Entstehung weiterer Polyiodide beobachtet.

Spektren

Die zur Charakterisierung der neuen Carbonylmangan-Komplexe wichtigen spektroskopischen Daten sind in den Tabellen 2a und 2b zusammengestellt.

Die Muster der IR-Absorptionen der Pentacarbonylmangan-Verbindungen im ν (CO)-Bereich sind vergleichbar (Tabelle 3). Gegenüber dem Bromokomplex

Tabelle 2a

Spektroskopische Charakterisierung der Carbonylmangan-Komplexe

$IR (cm^{-1})$ 2115m 2114m ν (CO), (CH ₂ Cl ₂) 2115m 2064m 2048w 2063m 2016vs 1976vs 2014vs 1985s)
ν(CO), (CH ₂ Cl ₂) 2115m 2114m 2064m 2048w 2063m 2016vs 1976vs 2014vs 1985s
2064m 2048w 2063m 2016vs 1976vs 2014vs 1985s
2016vs 1976vs 2014vs 1985s
1992m 1952s 1996sh 1974vs /
1943s
ν(C=O), (KBr) 1588br 1582 Ferrocenoyl
¹ H-NMR (CDCl ₃) ^a Ferrocenyl
$\delta(C_{s}H_{5})$ 4.07s (5) 4.20s (10) 4.22s (5) 4.00s (5)
$\delta(H^2 - H^5)$ 3.89vt(2) 4.69vt (4) 4.46vt (2) 3.71vt (2)
4.32vt (2) 5.01vt (4) 4.66vt (2) 4.17vt (2)
Sonstige 20.75s (1) 7.28m (15)
$(0 \circ C, Toluol-d_8)$ (PPh ₃)
$^{13}C-NMR(CDCl_3) = (-20^{\circ}C)^{b} = (-20^{\circ}C)^{c} = (25^{\circ}C)^{d} = (-40^{\circ}C)^{c,e}$
Ferrocenyl
$\delta(C_5H_5)$ 69.08 70.2 69.65 68.62s
$\delta(C^2 - C^5)$ (~69.10) 71.0 69.72 (~68.7)
79.4 73.2 71.27 79.9d (³ J 3.5 Hz)
$\delta(C^1)$ 75.3 82.4 94.6 82.6d (² J 17 Hz)
δ (C=O) (FcCO) – – –
δ (CO) (Mn) 208.3 ^f 213.5d (² J 14.5 Hz)
210.3 ^g 216.9d $(^{2}J$ 22.2 Hz) ^h
217.1d (² J 16.2 Hz)
Sonstige Phenyl '
$MS[m/e], (I_{-1}(\%))$
M^+ 380 (20%) 408 (7%) 614 (2%)
502 (14%) Mn(PPh ₃)Fc ⁺
316 (40%) Mn(PPh ₂ C ₆ H ₄
$MnFc^{+} 240 (100\%) 240 (100\%) 240 (100\%) 240 (47\%)$

^a Messungen bei der Arbeitstemperatur des Gerätes JEOL JNM PMX 60 (35°C); Abkürzungen: s Singulett, m Multiplett, vt virtuelles Triplett; Rel. Intensitäten in Klammern. ^b Bruker AC 200. ^c JEOL FX 90Q, ^d Bruker AC 300. ^e Bei Raumtemperatur wurden folgende Ferrocenylsignale beobachtet: δ 68.73s (C₅H₅), δ 68.82s (C³/C⁴), δ 80.3d (C²/C⁵, ³J 3.3 Hz), und δ 83.1d (C¹, ²J 16.75 Hz); Gerät Bruker AC 300. ^f trans zu Fc. ^g cis zu Fc. ^h cis zu PPh₃ und Fc. ^f Phenylgruppen des Liganden PPh₃: δ 128.2d (C³/C⁵, ³J 9.4 Hz); δ 130.1d (C⁴, ⁴J 1.7 Hz); δ 133.5d (C²/C⁶, ²J 10.25 Hz); δ 133.2d (C¹, ¹J 39.3 Hz). Das Spektrum ähnelt dem des freien Triphenylphosphans [24].

Tabelle 2b

Spektroskopische Charakterisierung der Carbonylmangan-Komplexe

	Mn(CO) ₄ - (CN ⁺ Bu)COFc (12)	Mn(CO) ₃ - (CN ⁺ Bu) ₂ COFc (13)	[Mn(CO) ₅ Fc]BF _a (14)	$\frac{ \mathrm{Mn(CO)}_{5}\mathrm{Fc} \mathrm{I}_{4}}{(15)}$
$\overline{IR(cm^{-1})}$				
$v(CO), (CH_2CI_2)$			2129m	2128m
	2072m	2008vs	2072vw	2071w
	1990vs		2034vs	2036vs (
	1961s	1940s (2021vs/
		1932s /		
$\nu(CN), (CH_2Cl_2)$	2181m	2182m		
		2158m		
ν (C=O), (KBr)	1576	1517		
Ferrocenoyl				
¹ H NMR (CDCL) ^a			Ь	8
Ferrocenvl				
δ(C.H.)	4 185 (5)	4.14s(5)		
$\delta(\mathbf{U}_{3}^{2}\mathbf{H}_{5}^{2})$	4.103(5)	4.143(3) 4.25vt(2)		
5(II -II)	4.67vt (2)	$4.23 \times (2)$ $4.67 \times (2)$		
Sonstige	1 495 (9)	1.41s(18)		
bolladge	$(^{1}\mathbf{B}\mathbf{n})$	(^{1}Bu)		
	(154)	(Du)		
$^{I3}C-NMR(CDCl_3)$		(40 ° C) (22	21
Ferrocenyl				
$\delta(C_5H_5)$		68.96		
$\delta(C^2-C^3)$		~ 69.2		
		69.8		
$\delta(C^1)$		94.6		
δ(C=O) (FcCO)		269.5		
$\delta(CO)$ (Mn)		215.7(br) ^d		
		218.6(br) ^e		
Sonstige		t-Butyl /		
$MS[m/e], (I_{-1}(\mathscr{G}))$				
M [*]	463 (1%)	$519(M+1)^+(0.5\%)$	(380) 8	(380) ^{-g}
Mn(⁺ BuNC)Fc ⁺	323 (42%)	323 (34%)	· ·	
Mn(HNC)Fc ⁺	267 (100%)	267 (100%)		
, , .		· ·		254 (60%) 1, "
MnFc	240 (100%)	240 (100%)	240 (100%)	240 (100%)

^{*d*} Messungen bei der Arbeitstemperatur des Gerätes JEOL JNM PMX 60 (35°C); Abkürzungen: s Singulett, m Multiplett, vt virtuelles Triplett; Rel. Intensitäten in Klammern. ^{*b*} Paramagnetische Komplexe. ^{*c*} JEOL FX 90Q. ^{*d*} trans zu FeCO. ^{*e*} trans zu ^TBuNC. ^{*f*} Ligand t-Butylisonitril: δ 30.2 (*C*H₃), 56.8 (*C*Me₃) und 159.5 (^tBuNC)(br). ^{*s*} Spektrum von Mn(CO)₅Fe (7).

 $Mn(CO)_5Br$ ist die Ladungsdichte im $[Mn(CO)_5]$ -Fragment des Ferrocenylkomplexes $Mn(CO)_5Fc$ (7) wohl etwas erhöht. Am empfindlichsten sollte die Frequenz der Bande bei niedrigster Energie (2000–1990 cm⁻¹) auf die Variation der Ladungsdichte ansprechen; diese Absorption wird der Streekschwingung (Rasse A₁) der zum Bromo- bzw. Ferrocenyl-Liganden *trans*-ständigen CO-Gruppe zugeordnet [21]. Die Frequenz dieser A₁-Bande ändert sich jedoch nur geringfügig, wenn elektronenziehende Substituenten wie in **5** und **6** am η^1 -Ferrocenylrest hängen: allerdings wird die Symmetrie des Komplexes erniedrigt, was sich in der Aufspal-

Tabelle 3

IR-Lösungsspektren der Pentacarbonylmangan-Komplexe im v(CO)-Bereich

Komplex	Solvens	$\nu(CO)(cm^{-1})$				Ref.	
		$\overline{(A_1)}_{eq}$		(E)		$(\mathbf{A}_1)_{ax}$	
Mn(CO) ₅ Fc (7)	Cyclohexan	2113m	2043w	2018vs		1993vs	a
$ \begin{array}{l} Mn(CO)_{5}Fc'\\ Fc'=2\text{-}Acetylferrocenyl (6)\\ Fc'=2,1'\text{-}Dichlorferrocenyl (5) \end{array} $	Cyclohexan Hexan	2117w 2120m	2060w 2057w	2024s 2027w	2014s 2024sh	1991s 2000s	7 5
Mn(CO) ₅ Br	Cyclohexan	2134w		2050vs		2001s	а
$[Mn(CO)_5Fc]BF_4$ (14)	Dichlormethan ^b	2129m	2072vw	2034vs			a
$[Mn(CO)_5Fc]I_4 (15)$	Dichlormethan ^b	2128m	2071w	2036vs	2021vs		а

^a Diese Arbeit. ^b Die Salze 14 und 15 sind in Cyclohexan unlöslich.

tung der intensiven E-Bande (um 2020 cm⁻¹) äussert, die der entarteten Valenzschwingung der vier equatorialen CO-Liganden entspricht (vgl. [7]). Die Ladungsdichte im [Mn(CO)₅]-Teil der Komplexe scheint durch die Art des Ferrocenyl-Liganden nur wenig beeinflusst zu werden; nicht einmal die Oxidation zum Ferrocenium-Kation (in 14 und 15) bewirkt grössere Änderungen in den ν (CO)-Frequenzen.

Die ¹H-NMR-Spektren der diamagnetischen Ferrocenylkomplexe (7–13) zeigen in allen Fällen das typische "Ferrocenylmuster" [22,23] mit einem sehr intensiven Singulett, das dem unsubstituierten Cyclopentadienylring entspricht, und zwei virtuellen Tripletts, die dem A,A',B,B'-Spinsystem der Protonen H²/H⁵ und H³/H⁴ am substituierten Ring zuzuordnen sind (Intensitätsverhältnis 5/2/2). Bei den Ferrocenyl-substituierten Carbonylverbindungen Fc-CHO, Fc-COOMe und (Fc-CO)₂ (Tabelle 1) wird stets das bei niedrigerem Feld liegende Pseudotriplett den zur Carbonylgruppe α -ständigen Protonen H²/H⁵ zugeordnet (vgl. [9b–d]).

Die ¹³C-Signale der CO-Liganden am oktaedrisch koordinierten Manganatom (Tabelle 2a und 2b) lassen sich bei $Mn(CO)_5Fc$ (7) eindeutig aufgrund ihrer Intensität den vier zum Fc-Liganden *cis*-ständigen (δ 210.33) und dem einen *trans*-ständigen CO-Liganden (δ 208.25) zuordnen. Eine ähnliche Überlegung zeigt bei *fac*-[Mn(CO)₃(CN¹Bu)₂COFc] (13), dass das intensive Signal (δ 218.64) zu den beiden zu den Isonitril-Liganden *trans*-ständigen CO-Liganden gehört, während die bei δ 215.72 auftretende Absorption dem zur Ferrocenoylgruppe *trans*-ständigen CO entspricht. Bei *cis*-[Mn(CO)₄(PPh₃)Fc] (11) repräsentiert das intensivste Dublett bei δ 216.86 sicherlich die beiden CO-Liganden, die sowohl zur Ferrocenyl- als auch zur Phosphangruppe in *cis*-Position stehen. Die Massenspektren der Mangankomplexe 7, 10 und 11–13 (Tabelle 2a und 2b) zeigen alle das Molekülion; als besonders intensives Fragment wird MnFc⁺ (m/e 240) beobachtet.

Dank

Herrn Prof. B. Wrackmeyer und Frau Dipl.-Chem. C. Stader danken wir für die Aufnahme und Diskussion von NMR-Spektren. Der Deutschen Forschungsgemeinschaft und dem Fonds der Chemischen Industrie sind wir für die finanzielle Förderung unserer Arbeiten zu grossem Dank verpflichtet.

Literatur

- 1 A.N. Nesmeyanov, L.G. Makarova und V.N. Vinogradova, Izv. Akad. Nauk SSSR, Ser. Khim., (1971) 892, (Chem. Abstr., 75 (1971) 49290g); ibid., (1972) 1600, (Chem. Abstr., 77 (1972) 140255b).
- A.N. Nesmeyanov, L.G. Makarova und V.N. Vinogradova, Izv. Akad. Nauk SSSR, Scr. Khim, (1973) 2796, (Chem. Abstr., 80 (1974) 96133w); Bull. Acad. Sci. USSR, Div. Chem. Sci., (1973) 2731.
- 3 K.H. Pannell, J.B. Cassias, G.M. Crawford und A. Flores, Inorg. Chem., 15 (1976) 2671.
- 4 M. Herberhold, H. Kniesel, L. Haumaier, A. Gieren und C. Ruiz-Pérez, Z. Naturforsch, B. 41 (1986) 1431.
- 5 A.G. Osborne und R.H. Whiteley, J. Organomet, Chem., 181 (1979) 425.
- 6 I.R. Butler, W.R. Cullen, F.W.B. Einstein und A.C. Willis, Organometallics, 4 (1985) 603.
- 7 S. Schreiber Crawford und H.D. Kaesz, Inorg. Chem., 16 (1977) 3193.
- 8 F.L. Hedberg und H. Rosenberg, Tetrahedron Lett., (1969) 4011.
- Gmelin-Handbuch der Anorganischen Chemie, Ergänzungswerk zur 8. Auflage. Band 14. Fe, Eisenorganische Verbindungen. Teil A. Ferrocen: (a) Ferrocen A2, S. 11-23, Springer, Berlin, 1977. (b) Ferrocen A2, S. 140-172, Springer, Berlin, 1977. (c) Ferrocen A3. S. 108-111, Springer, Berlin, 1978. (d) Ferrocen A6, S. 95, 99, Springer, Berlin, 1977.
- 10 Übersicht: C.M. Lukehart, Adv. Organomet. Chem., 25 (1986) 45-71.
- 11 A. Gieren und T. Hübner, persönliche Mitteilung (1987).
- 12 L. Wolf und H. Hennig, Z. Chem., 3 (1963) 469.
- 13 K. Schlögl und W. Widhalm, Monatsh. Chem., 112 (1981) 91.
- 14 K. Noack, M. Ruch und F. Calderazzo, Inorg. Chem., 7 (1968) 345; vgl. auch F. Calderazzo, Angew. Chem., 89 (1977) 305; Angew. Chem., Int. Ed. Engl., 16 (1977) 299.
- 15 B.L. Booth, M. Green, R.N. Haszeldine und N.P. Woffenden, J. Chem. Soc. A. (1969) 920.
- 16 H. Kniesel, Dissertation Univ. Bavreuth, in Vorbereitung.
- 17 D.W. Kuty und J.J. Alexander, Inorg. Chem., 17 (1978) 1489.
- 18 Vgl. A.I. Titov, E.S. Lisitsyna und M.R. Shemtova, Dokl. Akad. Nauk SSSR, 130 (1960) 341: Proc. Acad. Sci. USSR, Chem. Sect., 130/135 (1960) 79. Zur Darstellung von FeCp₂ * BF₄ * siehe H. Schumann, Chem. Ztg., 107 (1983) 65 und 108 (1984) 289.
- 19 A.N. Nesmeyanov, L.P. Yur'eva, R.B. Materikova und B.Ya. Getnarski, Izv. Akad. Nauk SSSR, Ser. Khim., (1965) 731: Bull. Acad. Sci. USSR, Div. Chem. Sci., (1965) 711.
- 20 T. Bernstein und F.H. Herbstein. Acta Cryst. B, 24 (1968) 1640.
- 21 F.A. Cotton und C.S. Kraihanzel, J. Ani, Chem. Soc., 84 (1962) 4432; vgl. H.D. Kaesz, R. Bau, D. Hendrickson und J.M. Smith, J. Am. Chem. Soc., 89 (1967) 2844.
- 22 D.W. Slocum und C.R. Ernst, Adv. Organomet. Chem., 10 (1972) 79.
- 23 M. Herberhold, M. Ellinger und W. Kremnitz, J. Organomet, Chem., 241 (1983) 227.
- 24 Carbon-13 NMR Spectra, A Collection of Assigned, Coded and Indexed Spectra, LeRoy F, Johnson and W.C. Jankowski, Editors: John Wiley and Sons, New York, London, Sydney, Toronto, 1972, Spectrum No. 478.
- 25 Anmerkung bei der Korrektur (27.6.1987): Nach der Röntgenstrukturanalyse (A. Gieren und T. Hübner) enthält Komplex 15 Z-förmige 1s² Anionen und [Mn(CO), Fe]⁺ Kationen.